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Abstract-A model for the radial heat transfer of a grooved heat pipe evaporator is presented. It combines 
the solution of a two-dimensional heat conduction problem with the calculation of the shape of the liquid- 
vapour interface and its temperature, taking into account the influence of meniscus curvature and adhesion 
forces on the volatility of the liquid. It is shown that the common assumption of an interface temperature 
equal to the saturation temperature of the vapour can lead to a large overprediction of the radial heat 

transfer coefficient. 

INTRODUCTION 

HEAT PIPES with open trapezoidal grooves for the 
liquid transport are of great practical interest as they 
can easily be fabricated. However, the prediction of 
the radial heat transfer coefficient of these heat pipes 
is still a problem. 

The radial heat transfer depends on the geometry 
of the wall and the liquid, and the boundary con- 
ditions (see Fig. 1). These are usually the pressurep, 
of the vapour inside the heat pipe, which is assumed 
to be constant over the cross-section, and the tem- 
perature T, at the outside. The symmetry planes 
between the grooves are adiabatic surfaces. The dry 
areas of the grooves, where no evaporation occurs, 
can also be considered as adiabatic if one neglects the 
relatively small convective cooling of these areas by 
the vapour. If gin is the average heat flux at the outside 
surface of the heat pipe, the radial heat transfer co- 
efficient is defined by 

where T,,, is the saturation temperature corre- 
sponding to the vapour pressure pv. 

The complications in this two-dimensional heat 
conduction problem arise from the fact that neither 
the temperature Tiy of the liquid-vapour interface nor 
its shape are explicitly given. 

Several authors [l-5] calculated radial heat transfer 
coefficients with one- or two-dimensional heat con- 
duction models with the simplifying assumptions that 
the interface temperature T,, is equal to T,,, and that 
the interface has a constant curvature K. An unknown 
wetting angle 9 was incorporated as a free parameter 
in these models. Both Schneider et al. [l] and 
Shekriladze and Rusishvili [4] derived a correlation 
for the radial heat transfer coefficient, which describes 
their numerical results. Comparing the results with 

experimental data, Schneider et al. concluded that the 
predicted values were too high. 

Wayner et al. [6, 71 have shown that the assump- 
tions T,, = T,, and K = constant are not valid in a 
very small ‘micro region’, where the meniscus comes 
close to the wall. This is primarily due to the transverse 
pressure gradient in the liquid phase, which is neces- 
sary for transporting the liquid in the micro region to 
the evaporating surface, and which leads to very large 
curvatures of the meniscus. These in turn lead to a 
significant decrease of the volatility of the liquid and a 
corresponding rise of the interface temperature above 
T Sal For a correct modelling of these phenomena 
account must be taken of the interaction between 
the liquid molecules and the wall atoms in the micro 
region. The resulting adhesion forces cause a steady 
transition of the evaporating meniscus into a flat non- 
evaporating film of microscopic thickness, which is 
adsorbed on the ‘dry’ part of the groove. The large 
curvature of the meniscus in this region creates macro- 
scopically the impression of a finite wetting angle 9. 
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FIG. 1. Element of the heat pipe wall with 
trapezoidal groove. 
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NOMENCLATURE 

A dispersion constant [J] Greek symbols 
a top width of the groove [m] S(l) shape of the liquid-vapour interface [m] 
b bottom width of the groove [m] ? dynamic viscosity [Pa s] 

.f evaporation coefficient i thermal conductivity [W rn-- ’ K- ‘1 
H thickness of heat pipe wall [m] kinematic viscosity [m’s_ ‘1 
&ad radial heat transfer coefficient ; coordinate parallel to the groove surface 

~rn~*K~‘] [ml 
h 
2 

specific heat of vaporization [J kg- ‘1 P density [kgm- ‘1 
curvature of the meniscus [m- ‘1 

ti evaporation rate [kg m _ * s ‘1 s 
surface tension of the liquid [N m- ‘1 
apparent wetting angle 

n coordinate normal to the interface [m] cp half groove angle. 

P pressure [Pa] 

Q heat flow per unit groove length Subscripts 

[wm-‘I C capillary 

4 heat flux [W m- ‘1 f outside of the heat pipe wall 
R radius of curvature of the meniscus in input 

b-4 iv vapour side of the liquid-vapour interface 

4 gas constant [J kg- ’ K- ‘1 I liquid 
T temperature [K] mat macro region 
W groove width [m] mic micro region 
X coordinate parallel to the heat pipe wall S solid 

[ml sat saturation 

Y coordinate normal to the heat pipe wall V vapour 

[ml. W groove wall. 

Wayner’s model was applied by Kamotani to an 
aluminium/ammonia heat pipe for calculating the 
heat transfer through the micro region and the appar- 
ent wetting angle 9 [8]. Holm and Goplen combined 
a simplified version of the Wayner model with a one- 
dimensional analysis of the radial heat transfer 
through heat pipe walls with trapezoidal grooves [9]. 

MODELLING OF THE MICRO REGION 

The model of the micro region goes back to Wayner 
et al. [6, 71. We use it in a mathematical form which 
is similar to that introduced by Kamotani [8]. 

The heat conduction through the liquid is assumed 
to be one-dimensional, normal to the wall of the 
gro0ve.t The extremely small thickness of the liquid 
layer in the micro region makes it necessary also to 
consider the interfacial heat resistance. Then the heat 
flux 4 can be written as 

The objective of the present paper is to analyse 
quantitatively the consequences which the simplifying 
assumptions Ti, = T,,, and K = constant have on the 
modelling of the radial heat transfer coefficient of a 
heat pipe evaporator. For this purpose a model has 
been developed which combines Wayner’s treatment 
of the liquid phase in the micro region with the two- 
dimensional solution of the heat conduction problem 
in the cross-sectional area shown in Fig. I, the ‘macro 
region’, which also comprises the micro region. 

In the following paragraphs the model equations 
for the micro and the macro region are presented. The 
numerical treatment of both regions, their coupling 
and the iterative computational procedure are 
explained. Finally, the model is used for computing 
an example for the radial heat transfer coefficient of 
the evaporator of an aluminium/ammonia heat pipe. 
The results are compared with predictions from the 
simplified models. 

t The validity of this assumption we checked by comparing 
the calculated normal temperature gradients with those par- 
allel to the groove wall, which were found to be several orders 
of magnitude smaller. 

4 = CT,-T,,) 
6 n,+ Tsar~(2~RgTsat) (2 -f) ___ 

hip, 2f > 

’ (2) 

where 6 is the local thickness of the liquid layer (see 
Fig. 2). The temperature T, of the groove wall in 
this equation is considered as a function of the <- 
coordinate (Fig. 2) as it depends on the heat con- 
duction through the wall. 

The relation between the temperature T,,, at the 
vapour side of the liquid-vapour interface and the 
saturation temperature Tsat is given by 

The capillary pressure pc can be expressed as 

pc=aKfA 
63’ 
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FIG. 2. Coordinate systems, temperatures and groove 
dimensions. 

The first term describes the influence of the meniscus 
curvature K. The second term is a pseudo capillary 
pressure which allows one to describe the effect of 
the adhesion forces. It goes back to the ‘disjoining 
pressure’ concept of Deryaguin et al. [lo]. A is the 
dispersion constant. Some investigators use the 
Hamaker constant A = 67~4 instead of A. The cur- 
vature K is connected with the thickness of the liquid 
layer 6 by 

For the modelling of the transverse liquid flow a one- 
dimensional laminar boundary layer approximation 
is used in the micro region. From the conservation of 
mass and the momentum equation the evaporation 
rate can be expressed as 

(6) 

Combining equations (2) and (6) one obtains a fourth 
order differential equation for the film thickness S(l) : 

= -2; 63% . (7) 
I ( > 

Ti, andp, are given as functions of 6 by equations (3)- 
(5). T,(5) has to be provided as an input resulting 
from the solution of the heat conduction problem in 
the macro region. 

t Rigidly, the temperature at the liquid side of the interface 
should be used instead of I”,,. However, the difference has 
a negligible influence on the macro heat transfer and the 
computed T,. 

HEAT CONDUCTION MODEL IN THE MACRO 

REGION 

The heat transfer through the heat pipe wall and 
the liquid in the groove is described by the two-dimen- 
sional heat conduction equation 

V - @V(T)) = 0 (8) 

where 1 is the thermal conductivity of the liquid or 
the solid phase, respectively. The boundary conditions 
are (see Fig. 2) : 

T = Tf at the outside of the heat pipe wall ( y = 0), 
i3T/ax = 0 at the symmetry lines (x = 0 and w/2), 
T = T,,t at the liquid-vapour interface (x0 < x < 
w/2) and 
aT/an = 0 at the ‘dry’ part of the groove (adsorbed 
film, 0 < x < x0), neglecting vapour convection. 

NUMERICAL TREATMENT 

The calculation of the meniscus shape and heat 
transfer in the micro region and the solution of the 
heat conduction problem in the macro region require 
different numerical approaches. Since the solution of 
each problem is needed as input for the other one, 
they are solved in an iterative procedure. 

Micro region 
The fourth order differential equation (7) is written 

as a system of four first order differential equations 
and integrated using a RungeKutta method. The 
unknown wall temperature T, is read from a data file, 
containing the solution of the macro region. 

For the integration the initial values of 6 and its 
first three derivatives have to be specified at 5 = 0 
where the meniscus is connected to a non-evaporating 
liquid film. For given temperatures T,,, and T,, the 
capillary pressure pC at < = 0 follows from 4 = 0 with 
equations (2) and (3). The slope d6/dc is set to zero. 
K is set to a very small value (aKx 10P7p,). The 
initial value of 6 is calculated from equation (4). 
d’6/d<’ is chosen so that the integration ends in a 
meniscus with a desired curvature. The integration is 
stopped at a value of r where the influence of the 
vapour pressure pC on the interface temperature I;, 

and the change of the curvature K with 5 have become 
negligible. Numerical experiments showed that, for 
given T,, and T,, all menisci in the groove practically 
do not differ from each other in the micro region. 
Therefore, it is in general sufficient to compute only a 
single meniscus in the micro region. The slope of this 
meniscus then yields the apparent wetting angle 9 to 
be used for the calculation in the macro region. 

Macro region 
Following the work of Schneider et al. [l], a finite 

element method is chosen to solve the heat conduc- 
tion problem described in equation (8). Triangular 
elements with quadratic functions are used. As noted 
by Schneider et al., the mesh generation is most impor- 
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tant in finding a solution within a desired accuracy. 
An additional problem is caused by the micro region. 
The grid width in the micro region is extremely small. 
On the other hand, the difference in size of two adjac- 
ent elements must not be too large to reach conver- 
gence. Therefore the numbers of nodes and elements 
become very high. 

The micro region is modelled by several eIements. 
The meniscus curvature outside the micro region is 
set to a constant value which corresponds to a given 
capillary pressure outside the micro region pc,mac. 

The boundary condition at the interface, the tem- 
perature T,,, is read from a file containing the solution 
of the one-dimensional computation in the micro 
region. 

Iteration between micro region and macro region 
The iteration procedure is shown in Fig. 3. The 

calculation is started in the micro region with the given 

center meniscus 

= xg;, t 

FIG. 3. iteration scheme for the computation of the radial 
heat transfer coeficient. 

boundary conditions and an assumed constant value 
of the wall temperature in the micro region r,.,,,. 
The computed meniscus shape 6, the apparent wetting 
angle 9. the temperature distribution T,, at the inter- 
face and the total heat transferred in the micro region 

Qmic = 4dt r (9) 

are stored. According to the apparent wetting angle 9 
and the capillary pressure pc.mac the meniscus is then 
centred in the groove. 

The finite element program for the macro region is 
activated using the interface temperature T,, and the 
meniscus shape S calculated before. The resulting heat 
flux and temperature distribution in the wall and in 
the liquid are stored. 

The computations in the micro and in the macro 
region are repeated with different constant wall tem- 
peratures r,.,,,, until the computed heat transported 
through the wall into the micro region has become 
equal to Qm,. 

Now the procedure is started again, using the com- 
puted distribution of the wall temperature TW(t) in 
the micro region instead of a constant value. The 
iteration is stopped when the results of the two models 
do not change any more. 

RESULTS AND DISCUSSION 

As an example, an aluminium/ammonia heat pipe 
with T,,, = 300 K and T, = 301.31 K has been studied. 
The material properties and the geometry of the 
groove structure used are listed in Table 1. The 
grooves were chosen to be of triangular shape. 

The value of the dispersion constant A used in the 
present example has been estimated on the basis of refs. 
[ 11, 121, which indicate that these values are usually of 
the order of 1 O- ’ ’ J. However, numerical experiments 
showed that the dispersion constant has only a small 
influence on the meniscus shape and on the heat flux. 
Using a dispersion constant of A = 1 x 10W2’ J instead 
of A = 2 x lo-*’ J in the example changed the radial 
heat transfer coefficient by less than 3%. 

The results for the micro region are summarized in 
Fig. 4, which shows the phenomena occurring in the 
region where the liquid layer 6 is thinner than 10’ 7 
m. At first the meniscus approaches the wall with a 
practically constant slope, which defines the apparent 
wetting angle 9. In this part the meniscus still has 
essentially the same curvature as in the macro region 
(the curvature is too small to be noted in the small 
scale of the diagram). The evaporating heat flux 4 
rises in correspondence with the decreasing thickness 
of the liquid layer. The interface temperature T,, is 
practically identical to T,,, until 6 approaches values 
of IO-” m. Then T,, rises rapidly to the value of the 
wal1 temperature T, at [ = 0, which is 301.0 K. As a 
result, 0 passes through a sharp maximum of 5300 W 
cm-’ and then drops to zero. 
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Table 1. Data for the computation of the presented example 

NH,; sol. : Al1 at 7’.,, = 300K 
li8OX 763 

488.00 
9.06 

600.00 
221.00 

0.480 
0.020 

1.30 x 1o-4 
2.00x lo-21 

1.00 

Properties of materials (liq. 
Specific heat of evaporation h, 
Gas constant R, 
Density of saturated vapour pV 
Density of liquid p, 
Thermal conductivity of solid 1, 
Thermal conductivity of liquid 1, 
Surface tension d 
Dynamic viscosity of liquid n, 
Dispersion constant A 
Evaporation coefficient f 

Groove width w 
Groove height H 
Top width a 
Bottom width b 
Half groove angle u, 

Groove geometry 
1.0 x 1o-3 
1.5 x Io-3 

0 
0 

45.0 

J kg’- ’ 
Jkg-‘K-’ 

$$I’ 3 

W m-’ K-’ 
Wm-‘K-’ 

Nrn.-’ 
Pa s 

J 
- 

m 
m 
m 

dr& 

Boundary conditions 
Main capillary pressure pP,mec 22.0 Nm-’ 
Outer wail temperature Tr 301.31 K 

- 2. 
transverse liquid *6; 

-flow 

0. 

----___ 

- 0. 

A 
0. 0.1 0.2 0.3 0.4 0.5 

E, m *lo-6 

FIG. 4. Meniscus shape, heat flux and interface temperature in the micro re8ion 
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The rise in z, is caused by the increasing capillary 
pressure pC (see equation (3)) which is required to 
drive the transverse flow of the liquid. At the begin- 
ning of the rise in Ti, the meniscus is still too far away 
from the wall for the adhesion forces to contribute 
to pc, so that the rise in pc is produced by a strong 
increase of the curvature of the meniscus (I&, = l/ 

rc,,, = IO-’ m). This Ieads to a rapid bending of 
the meniscus and the generation of a finite apparent 
wetting angle 9 = 19.7”. At the end of the rise in Ti, 
the C3 power of the adhesion force term produces 
the necessary capillary pressure, while the curvature 

goes to zero and the meniscus levels off into a flat non- 
evaporating film. 

The total heat transferred per unit groove length in 
theregion~ptot=2xlO-~misQ=3.4Wm-’, 
which agrees with Kamotani’s value [8]. The total 
heat transferred in the micro region (here : 0 < 5 < 

1 x 1O-6 m) is Qmic = 6.6 W m- ‘. 
The computation in the macro region shows that 

the transfer of Qmic through the heat pipe wall into 
the micro region requires an average heat input of 
gin = 3.0 W cme2. The adsorbed liquid film covers 
about 15% of the groove. 
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FIG. 5. Plot of r,, T, and TiV over a logarithmic, dimensionless length coordinate. 

Figure 5 is a semi-logarithmic plot of the tem- 
peratures r,, T, and Tiv. It shows that T, is nearly 
constant in the micro region. Therefore it does not 
seem to be necessary to consider the exact distribution 
of T,(l) in the micro region. Test calculations have 
confirmed that the results almost do not change if the 
correction of the constant wall temperature in the 
micro region T,,,,, is left out (see outer loop in Fig. 
3). Figure 6(a) shows the same temperatures over a 
linear length scale. The rise in Ti, appears here as a step 
change. The radial heat transfer coefficient defined in 
equation (1) is brad = 2.3 W cm-’ K-l. About 23% 
of the total heat in the groove goes through the very 
first part of the evaporating film (0 ,< < < 2 x lo-’ m) 
and about 45% through the micro region. 

If the interface temperature TV is set constant to 
Tsat, like in previous papers, a much different tem- 
perature distribution appears in the heat pipe wall and 
in the liquid for the same values of T, and T,,, and the 
same geometry, as is shown in a comparison of Figs. 
6(a) and (b). The top of the groove is now cooled 
down by evaporation, more heat goes through the 
evaporator wall (& = 10.4 W cm-‘) and one gets a 

higher radial heat transfer coefficient (h,, = 7.9 W 
cm _ 2 K- ‘). The fraction of heat going through the 
micro region now is 94%. Figure 7 shows the iso- 
therms in the macro region in the case of a computed 
interface temperature (Fig. 7(a)) and in the case of a 
constant interface temperature equal to T,,, (Fig. 
7(b)). As can be seen, the consideration of the correct 
interface temperature is decisive for the temperature 
profile in the whole heat pipe wall, although TV is 
different from the saturation temperature only in the 
micro region. Numerical experiments showed that the 
distribution of the temperature 7’iV in the micro region 
is not so much responsible for the change, but the 
total temperature rise T,,(t = 0) - T,,,, which governs 
the temperature of the whole top part of the heat pipe 
wall. 

The essential numerical results are summarized in 
Table 2. The radial heat transfer coefficient, in the case 
of a calculation with a constant interface temperature 
T,, = T,,, agrees with the value calculated from the 
correlation of Schneider within the indicated accuracy 
of 15% [I]. The present paper shows that this value 
is about three times too high due to the assumption 

Table 2. Essential results of the computation and comparison with simplified models 

Present paper Schneider [I] Shekriladze [4] 
T,” = T(r) T,v = T,, T, = T,, T,, = T,, 

G- T,, [Kl 1.31 1.31 - 

4i. W cm-21 3.0 10.4 - 

QmdQin [%I 45 94 - 

h,, [w cm- 2 K- ‘1 2.3 7.9 -6.9 -3.9 
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FIG. 6. Computed temperatures in the macro region for given Tf and T,,. (a) Present model. (b) Assuming 
Ti:,, = T,, and K = constant. 
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FIG. 7. Isotherms in the heat pipe wall and in the liquid phase. (a) Present model. (b) Assuming 7;, = r,,, 
and K = constant (temperature difference between two isotherms : AT = 0.0202 K). 

of a constant interface temperature. This may explain 
the difference to the experimental values noted by 
Schneider. The value calculated with the simplifying 
correlation given by Shekriladze and Rusishvili [4] is 
about twice as high as the value in the present 

paper. 

CONCLUSION 

The presented model allows the calculation of the 
radial heat transfer coefficient in heat pipes with open 
grooves. The given example shows that it is necessary 
to take into account the influence of meniscus cur- 
vature and adhesion forces on the relation between 
vapour pressure and interface temperature. The micro 
region where the meniscus comes close to the wall 
is decisive for the apparent wetting angle and the 
temperature of the dry part of the groove wall. The 
assumption of an interface temperature T,, equal to 
the saturation temperature T,,, of the vapour intro- 

duces an artificial cooling of the top of the groove and 
can lead to a large overprediction of the radial heat 
transfer coefficient. 
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ANALYSE DU COEFFICIENT D’ECHANGE DE CHALEUR DE L’EVAPORATEUR DUN 
CALODUC A RAINURES 

RksumL-On presente un modtle de transfert radial de chaleur a travers l’tvaporateur dun caloduc a 
rainures. La solution en deux dimensions d’un probleme de conduction de la chaleur est couplte a 
l’estimation de la forme de l’interface liquide-vapeur et sa temperature. Le modele prend en compte 
l’influence de la courbure du m&risque et des forces d’adhtsion sur la volatilitt du liquide. On montre que 
l’hypothese courante, qui suppose l’egalite de la temperature de l’interface et la temperature de saturation 

de la vapeur, peut conduire a une forte surestimation du coefficient d&change radial de chaleur. 

STUDIE DES WARMEDURCHGANGSKOEFFIZIENTEN IN DER VERDAMPFUNGSZONE 
EINES WARMEROHRES MIT OFFENEN KAPILLARRILLEN 

Zusammenfassung-Ein Model1 zum radialen Warmedurchgang in der Verdampfungszone eines Wlrme- 
rohres mit offenen Kapillarrillen wird vorgestellt. Die Losung eines zweideimensionalen Warmeleit- 
problems ist gekoppelt mit der Berechnung der Form und der Temperatur der Grenzkurve zwischen 
fliissiger und dampfformiger Phase. Dabei werden sowohl der Einflufi der Kriimmung der Phasengrenze, 
als such der der Adhlsionskrafte auf die Verdampfung beriicksichtigt. Es wird gezeigt, da13 die iibliche 
Annahme, die Temperatur der Phasengrenze sei gleich der Slttigungstemperatur des Dampfes, zu einer 

erheblichen Uberschatzung des radialen Wirmedurchgangskoelhzienten fiihren kann. 

AHAJIM3 K03@cPHI@iEHTA TEI-IJIOI-IEPEHOCA OT CTEHOK MCI-IAPHTEJDI 
TEI-IJIOBOR TPYPbI C HAHECEHHbIMH HA HHX KAHABKAMH 

AElEOTZt~nHCbIBat?TCK MOJWJXb pWHaJIbHOr0 TelLVOn.ZpeHOCa OT HCnapHTeJIK TellJIOBOii TpY6Y C 

HaHeCeHHbIMH Ha CTeHKj’ KaHiSBKahfH. MOnmb BKJIIOSaeT PeIlICIiHe AByMepHOti SaSWSH TellJtOnpOBO& 

HOCTH H 0npeneneHHe @opMbI H TebmepaTypbI rpaHHUbl pasnena ~simocrb-nap c yseroM B~HI~HHI~ 

KpHBEi3HbI MeHHCKa Ei WR3HOHHhIK CHJI Ha JIt?T)'WCTb XHLUCOCTH. ~OKa3aH0, YTO 06ufxpHHmOe II~IZA- 

nonoxeHHe 0 paeeHcrBe -rehmepaTypw Ha rpamiue pasnena H rehmeparypbr riacbnnenmt riapa npaeo- 


